Изучение формирования вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта

Актуально о образовании » Формирование вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта » Изучение формирования вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта

Страница 6

Когда учащиеся овладели приемом присчитывания, учитель знакомит их с приемом отсчитывания: 5—2 = ? На наборном полотне выставляются 5 кругов. Нужно отнять 2 круга. Отсчитываем 1, осталось 4, отсчитываем еще 1, осталось 3, значит, 5—2=3.

Если приемом присчитывания ученики 1-го класса овладевают довольно быстро, то приемом отсчитывания — намного медленнее. Особенно это относится к ученикам со значительной степенью умственной отсталости. Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся 1-го класса труден. Кроме того, ученики плохо запоминают, сколько нужно отнять, сколько уже отняли, сколько еще надо отнять.

При изучении каждого числа первого десятка учащиеся получают представления и о составе этих чисел. Состав чисел усваивается учащимися при объединении двух предметных совокупностей, а также разложении их на две группы и определении количества предметов в каждой группе. Например, при изучении числа 5 учащиеся отсчитывают 5 предметов и раскладывают их на две группы, пересчитывают предметы в каждой группе и обозначают их количество соответствующей цифрой. Затем группы предметов меняют местами. На наборном полотне составляется таблица

Необходимо чаще для отыскания ответа при вычитании отсылать учащихся к таблице сложения. Например, при решении примера 7—3 учащиеся должны в таблице сложения отыскать пример 3+4=7. Полезно решать сразу три примера 3+4, 7—3, 7—4, сопоставляя их. По примеру на сложение 5+2=7 учитель также учит детей составлять и решать два примера на вычитание с теми же числами: 7—2, 7—5.

Решение и сопоставление подобных примеров, а впоследствии и составление по одному примеру на сложение других трех, не только способствует осознанию взаимосвязи между действиями и запоминанию табличного сложения и вычитания, но и играет огромную корригирующую роль. Анализ, сравнение будят мысль ребенка, заставляют его сознательно подходить к выполнению действий. Надо помнить о том, что ученик 1-го класса, как бы много подобных упражнений он ни выполнял, не вскроет заложенных в этих примерах зависимостей. Учитель своими заданиями по выделению признаков сходства, различия, организацией наблюдений над изменением компонентов действий способствует активизации мыслительной деятельности, преодолению косности и формализма в знаниях.

Уже в 1-м классе при изучении чисел первого десятка важно обратить внимание учащихся на то, что складывать можно любые числа, а вычитать — только из большего числа меньшее, что решить пример вида 3—4 нельзя. Если учитель не обратит внимание умственно отсталых школьников на это, то они допускают ошибки и при решении и при составлении примеров на вычитание: вычитают из меньшего числа большее, составляют примеры вида 5—7=2.

Получение числа закрепляется различными упражнениями

Примерные виды заданий: «Отложите на счетах 3 красные косточки. Прибавьте столько желтых косточек, чтобы получилось 4. Наклейте или раскрасьте 3 синих круга и 1 красный. Сколько всего кругов получилось? Обведите 3 клеточки синим карандашом. Сколько клеточек надо еще обвести, чтобы их стало 4? Положите 3 копейки. Сколько денег надо прибавить, чтобы получилось 4 копейки?»

Учитель раздает каждому по 3 шарика: «Сосчитайте шарики и вылепите еще столько шариков, чтобы их стало 4». Учащимся, которые сами не справляются с таким заданием, учитель оказывает помощь.

Далее учащиеся учатся считать элементы предметных совокупностей из 4 элементов.

Учащиеся школы VIII вида должны понимать, что числа получаются не только в результате счета, но и в результате измерения. Поэтому при получении чисел полезны и упражнения на укладывание мерки в полоске или отрезке и подсчет числа мерок сначала в полоске, а затем в мерной (масштабной) линейке. Линейка с нанесенной на ней сантиметровой шкалой является хорошим наглядным пособием при рассмотрении вопросов нумерации (в частности, получения чисел).

Соотношение количества, числа и цифры

Учащиеся школы VIII вида вначале не связывают число с цифрой. Осознание такого соотношения требует многочисленных упражнений разнообразного характера, например:

1. К заданному количеству предметов подобрать нужную цифру. Учитель говорит: «Мама купила 4 апельсина. Покажите цифрой, сколько апельсинов купила мама. Проверим. Посчитаем вместе, хором, и прикрепим цифру 4».

К цифре подобрать соответствующее количество предметов. «Эта кукла не умеет говорить, но знает цифры. Смотрите, какую цифру она показала (3). Это она просит конфеты. Сколько конфет она просит? Дадим кукле 3 конфеты».

Страницы: 1 2 3 4 5 6 7 8

Подробно о педагогике:

Развитие речи детей в онтогенезе
Как правильно оценить состояние речи своего малыша? Как и когда ребенок должен заговорить? В каких случаях стоит волноваться, а в каких - просто подождать. Как не пропустить момент, когда ему, возможно, потребуется ваша помощь или помощь специалистов? Эти и другие непростые вопросы задают себе те р ...

Система упражнений для обучения диалогической речи
В качестве основных, обучающих диалогических форм общения (ДФО) фигурируют упражнения, развивающие умение быстро и разнообразно реагировать на сказанное собеседником, умение поддержать беседу («Как бы вы реагировали, если бы вам сказали .»). Считается, что без этого невозможно обеспечить такое усво ...

Причины возникновения невротической формы заикания
Клиника невротического заикания характеризуется ведущим синдромом заикания с преобладанием в начальном периоде заболевания тонической судороги в дыхательно-вокальной мускулатуре с постепенным присоединением тонико-клонических судорог в артикуляционной мускулатуре. Артикуляторные механизмы устной ре ...

Разделы

Copyright © 2021 - All Rights Reserved - www.educationtheory.ru