Математика, особенно в школе, воспринимается как «нетворческий» предмет. О развитии творческих математических способностей на уроках математики можно прочитать в книгах Д. Пойа [64], Н. Тучнина [73] и др. Однако разговор в них идет именно о математическом творчестве, а сегодняшний социальный заказ общества предъявляет к личности, среди прочих качеств, умение действовать в нестандартных ситуациях [53], причем далеких от применения «явной» математики. Таким образом, речь идет о формировании такого качества личности как креативность, а не математическая креативность.
![]() |
С точки зрения ТРИЗ это система (антропогенная) и к ней предъявляется требование: способствовать развитию креативности в процессе ее реализации. Опыт преподавания показывает сложность выполнения этого требования на практике. Кардинально преобразовывать данную систему не рационально (ее применения эффективно для достижения других дидактических целей математики, методика ее использования хорошо отработана) с одной стороны, а с другой преобразование необходимо для выполнения указанного требования к системе.
Сформулируем ИКР: система осталось неизменной, но требование стало выполняться. Используем инструмент ТРИЗ – вепольный анализ, который позволяет добавить в систему новое «вещество» Х, которое создает поле, отвечающее предлагаемому требованию (рис. 3).
![]() |
Именно переход от ситуации к задаче должен помочь развивать на уроках математики креативность, причем при использовании данной схемы отработанная методика по использованию модели перехода от задачи просто необходима для сохранения других дидактических целей.
Задача отличается от ситуации наличием четкой формулировки, условие содержит все необходимые данные в явном виде, метод решения зачастую известен и представляет собой цепочку формальных операций, правильный ответ определен однозначно. Ситуация в свою очередь имеет неопределенное условие, разные подходы к решению, множества решений, благодаря чему она ближе к проблемным ситуациям, возникающим в жизни.
Основная цель практико-ориентированных (прикладных и практических) задач в школе на уроках математики (А. Азевич, Е. В. Величко, М. В. Крутихина, В. А. Петров, В. В. Пикан, Н. А. Терешин, А. Н. Тихонов, Ю. Ф. Фоминых, И. М. Шапиро и др.) заключается в осуществлении содержательной и методологической связи школьного курса математики с профессиональной составляющей образования, то есть способствуют развитию профессиональных умений, входящих в состав учебной и познавательной деятельности в процессе изучения математики, а не развитию креативности учащегося. Поэтому практико-ориентированные задачи нельзя в полной мере назвать ситуацией.
Пример 1. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре Р оно пропускало больше света.
Подробно о педагогике:
Краткая биография Корнея Чуковского
Корней Иванович Чуковский (Николай Иванович Корнейчуков) родился в Петербурге в 1882 году в бедной семье. Свое детство он провел в Одессе и Николаеве. В одесской гимназии он познакомился и подружился с Борисом Житковым, в будущем также знаменитым детским писателем. Чуковский часто ходил в дом к Жит ...
Организация трудовой деятельности в ДОУ
Дошкольное образовательное учреждение функционирует в помещении, отвечающем санитарно-гигиеническим, противоэпидемическим требованиям и правилам противопожарной безопасности, а также психолого-педагогическим требованиям к благоустройству дошкольного учреждения, определёнными, нормативными документа ...
Общие представления о психических познавательных
процессах человека
Познавательные процессы входят как составная часть в любую человеческую деятельность и обеспечивают ту или иную ее эффективность. Познавательные процессы позволяют человеку намечать заранее цели, планы и содержание предстоящей деятельности, проигрывать в уме ход этой деятельности, свои действия и п ...